
ANL-77-95 ANL-77-95 

CLADDING FAILURE BY 

LOCAL PLASTIC INSTABILITY 

by 

J. M. Kramer and L. W. De i t r i ch 

BASE TECHNOLOGY 

UafC-AUA-USDOE 

ARGONNE NATIONAL LABORATORY, ARGONNE, ILLINOIS 

Prepared for the U. S. DEPARTMENT OF ENERGY 
under Contract W-31-109-Eng-38 



The facilities of Argonne National Laboratory are owned by the United States ^^ ^^^ 
Under the t e rms of a contract (W-31-109-Eng-38) between the U. S. ^^P^'^*'"^"^ ° loys 

Argonne Universities Association and The University of Chicago, the Universi Y 
ment 
ergy, 
the staff and operates the Laboratory in accordance with policies and prog 
proved and reviewed by the Association. 

rams formulated, ap-

MEMBERS OF ARGONNE UNIVERSITIES ASSOCIATION 

The University of Arizona 
Carnegie-Mellon University 
Case Western Reserve University 
The University of Chicago 
University of Cincinnati 
Illinois Institute of Technology 
University of Illinois 
Indiana University 
Iowa State University 
The University of Iowa 

Kansas State University 
The University of Kansas 
Loyola University 
Marquette University 
Michigan State University 
The University of Michigan 
University of Minnesota 
University of Missouri 
Northwestern University 
University of Notre Dame 

The Ohio State University 
Ohio University 
The Pennsylvania State University 
Purdue University 
Saint Louis University 
Southern Illinois University 
The University of Texas at Austin 
Washington University 
Wayne State University 
The University of Wisconsin 

NOTICE-

This report was prepared as an account of work sponsored 
by the United States Government. Neither the United States 
nor the United States Department of Energy, nor any of their 
employees, nor any of their contractors , subcontractors , or 
their employees, makes any warranty, express or implied, 
or assumes any legal liability or responsibility for the ac
curacy, completeness or usefulness of any information, ap
paratus, productor process disclosed, or represents that its 
use would not infringe privately-owned rights. Mention of 
commercial products, their manufacturers , or their suppli
ers in this publication does not imply or connote approval or 
disapproval of the product by Argonne National Laboratory 
or the U. S. Department of Energy. 

Printed in the United States of America 
Available from 

National Technical Information Service 
U. S. Department of Commerce 

5285 Por t Royal Road 
Springfield, Virginia 22161 

P r i c e : Printed Copy $4.50; Microfiche $3.00 



Distribution Category: 
LMFBR Safety (UC-79p) 

ANL-77-95 

ARGONNE NATIONAL LABORATORY 
9700 South Cass Avenue 
Argonne, Illinois 60439 

CLADDING FAILURE BY LOCAL PLASTIC INSTABILITY 

by 

J. M. Kramer and L. W. Deitrich 

Reactor Analysis and Safety Division 

December 1977 





TABLE OF CONTENTS 

Page 

ABSTRACT 5 

I. INTRODUCTION 6 

II. BULGE-DEFORMATION KINEMATICS 8 

III. EQUILIBRIUM 12 

IV. STRAIN-DISPLACEMENT RELATIONSHIPS 17 

V. CONSTITUTIVE EQUATIONS - AN EXAMPLE 19 

VI. RESULTS AND DISCUSSION 24 

VII. CONCLUSIONS 31 

ACKNOWLEDGMENTS 33 

REFERENCES 34 



LIST OF FIGURES 

Page 

Figure 1. Cladding Geometry: (A) Undeformed; (B) Deformed . . • • 

Figure 2. Differential Element of Deformed Middle Surface . . . . 

Figure 3. Biaxial Stress-rupture Strength of 10-15% 
Cold-worked Stainless Steel, Data (symbols) 
from D. F. Atkins [4]. (1 h = 3600 s) ^^ 

Figure 4. Dlmensionless Radial (a). Axial (A), and Bulge (e) 
Displacements of a Closed Tube for an Initial 0.0055-mm-
amplitude Bulge of Length 10.0 mm and No Temperature 
Perturbation. (1 hr = 3600 s) 27 

Figure 5. Same as Fig. 4, Except with an Initial Bulge Length 
of 5.0 mm. (1 hr = 3600 s) 28 

Figure 6. Same as Fig. 4, Except for an Open Tube with No Axial 
Force. (1 hr = 3600 s) 28 

Figure 7. Same as Fig. 4, Except with 10°C Temperature 
Perturbation. (1 hr = 3600 s) 29 

LIST OF TABLES 

Table I Stainless Steel Properties Used in Equation 5-5 24 



CLADDING FAILURE BY LOCAL PLASTIC INSTABILITY 

by 

J. M. Kramer and L. W. Deitrich 

ABSTRACT 

Cladding failure is one of the major considerations in analysis 

of fuel-pin behavior during hypothetical accident transients since 

time, location, and nature of failure govern the early postfallure 

material motion and reactivity feedback. Out-of-pile thermal 

transient tests of both irradiated and unirradiated fast-reactor 

cladding show that local plastic instability, or bulging, often 

precedes rupture and that the extent of local instability limits 

the initial rip length. 

To investigate the details of bulge formation and growth, a 

perturbation analysis of the equations governing large deformation 

of a cylindrical shell has been developed, resulting in a set of 

linear differential equations for the bulge geometry. These equa

tions have been solved along with appropriate constitutive equations 

and various constraints on the ends of the cladding. 

Sources for bulge formation that have been considered include 

initial geometric Imperfections and thermal perturbations due to 

either eccentric fuel pellets or nonsymmetric cooling. Of these, 

only the first is relevant to out-of-pile burst tests. Here it has 

been found that the most likely imperfection that will grow unstably 

to failure leads to a bulge around half the circumference with an 

axial length 1.1 times the deformed diameter. This is in general 

agreement with burst-test results. For the case of in-reactor 

fuel pins, it has been found that thermal perturbations can signi

ficantly affect local instability, particularly if the deformation 

process is thermally activated with a high activation energy. 



I. INTRODUCTION 

The response of cladding to mechanical loads is one of the major consider

ations in the analysis of fuel behavior during hypothetical accident transients 

in fast breeder reactors. Failure of cladding under these loads is important 

in both overpower and undercooling accident sequences. In the overpower acci

dent, mechanical loads lead to cladding failure allowing the initial release 

of fuel and fission gas from the pin. The release of fuel and its subsequent 

motion can lead to early neutronic shutdown of the reactor in the location of 

the failure is favorable - such that fuel motion is away from the core midplane -

or to an energetic excursion if the location of failure is unfavorable. On 

the other hand, cladding failure in the high-power subassemblies in an under

cooling situation usually results from cladding melting. Under some conditions, 

however, reactivity feedbacks due to sodium voiding and cladding relocation in 

undercooled subassemblies can lead to severe power excursions in other sub

assemblies not yet voided. The behavior of fuel in these subassemblies is 

expected to be similar to that in the overpower accident, although Important 

differences may arise due to differences in temperature distribution. 

Loading of the cladding in an overpower accident may result from differen

tial thermal expansion of fuel and cladding, from transient fuel swelling, 

from molten-fuel expansion, or from pressure of fission gas initially in the 

porosity or released from grains during the transient. The present analysis 

considers the response of cladding to those loads that act hydrostatically. 

This type of loading is thought to be most representative of conditions prior 

to cladding failure during transient overpower conditions [1]. The analysis 

is also directly applicable to recent experiments [2] on both fresh and 

irradiated stainless steel FTR cladding in which gas pressure loading was 

used. 

The transient burst experiments [2] have shown that high-temperature 

failure of cladding is often by local plastic instability or bulging. This 

deformation is illustrated in Fig. IB. A small section of the cladding, which 

may be the site of either a geometric imperfection or a thermal hot spot, 

grows more rapidly than the remainder of the cladding. The strains in this 

localized bulge are larger than the average strains. If temperatures are high 

and strain rates low. grain-boundary separation may lead to a pin-hole failure at 

this site. On the other hand, if a pin-hole failure does not occur, or if the 



loading is maintained, the bulge may eventually begin to grow unstably, leading 

to rapid rupture by ripping along the length of the bulge. In either case, 

the failure is governed by the bulge behavior. It is the analysis of this 

localized behavior that is the subject of this paper. 

(o) 

Fig. 1 Cladding geometry: (A) Undeformed; (B) Deformed. 



II. BULGE-DEFORMATION KINEMATICS 

we model the cladding as a thin cylindrical shell of radius a^ and thick

ness h subjected to an internal pressure P. The middle surface of the shell 
° . . -K ̂  hv r = a where (r,6,z) is the cylindrical 

in the undeformed state is described by r a^, wner v 
coordinate system shown in Fig. lA along with the associated unit vectors 

^\' \ ' \^-
During deformation, at some time t, a material particle which occupied 

coordinates 6 , z on the undeformed middle surface will now occupy the spatial 
o o 

position given by 

r = fi(e^, z^, t); (2-la) 

= f2(ê . S' >̂' 
(2-lb) 

Z = fgCe , Z , t) (2-lc) 
^ o o 

as shown in Fig. IB. With this notation, 6 and z serve both as labels for 

material particles and as parameters to characterize the deformed middle 

surface. Since for all times t fixed values of these parameters locate the 

spatial position of the same material particle, 0 and z are often referred 

to as convected coordinates. Once the forms of f^, t i , and fs in Eqs. 2-1 are 

explicitly known, all of the properties of the deformation of the shell, such 

as stretching, thickness change, and curvature change, can be determined. 

In order to proceed further, we simplify the kinematics by assuming that 

the deformation consists of a local perturbation, or bulge, super-imposed on 

an axisymmetric deformation which transforms the undeformed cylinder of radius 

a^ into another cylinder of radius a(t). It is further assumed that the 

overall deformation is plane in the axial direction and that the radial displace

ment is much larger than the tangential displacement. Equations 2-1 can then 

be reduced to 

r = a(t) + e(e^, z^, t); (2-2a) 

9 = 9 ; (2-2b) 



z = x(t)z (2-2c) 

with the position vector of the deformed middle surface given by 

r = (.a+e)i + Az 1 
r o z 

(2-3) 

where e is the perturbation to the cylindrical geometry. Although the simpli

fied kinematics described by Eqs. 2-2 is plausible in light of the localized 

nature of the deformation shown in Fig. IB, its validity, of course, can only 

be tested a posteriori from experimental evidence. 

We consider now the geometry of a differential element of the deformed 

middle surface as shown in Fig. 2. The covariant base vectors e^ and 

eo, which lie on the surface along the 6 and z surface coordinates, are 
•̂  o o 
given from Eq. 2-3 by 

3r 3e - ^ / _!_ N- (2-4a) 

e2 = 
9r 
9z 

9£ 
3z 

1 + Xi 
r z 

(2-4b) 

_ dF, 

flo+dfio 

F.+ ̂  dflo 

Fig. 2 Differential Element of 
Deformed Middle Surface. 
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The differential vector dr connecting two neighboring points on the 

deformed surface is defined by 

,- = 1 ^ d6 + 1 ^ dz , <2-5) 
86 o 3z o 
o o 

and the separation ds of these two points is given by 

ds2 = d7 • d7 = Ede2 -I- 2Fde dz + Gdz^ , (2-6) 
o o o o 

* 
where E, F, and G are the first fundamental magnitudes of the surface. 

Substitution of Eqs. 2-4 and 2.5 into Eq. 2-6 shows that 

E = (If-J + (a + e)2 , (2-7a) 

F = ̂ ^ 1 ^ (2-7b) 
9z 36 o o 

= (%J + A2 . (2-7c) 

The surface area dA and the unit normal n of the differential element 

shown in Fig. 2 can be determined from 

dA n = ei X eo d6 dz = Hd6 dz n , (2-8) 
^ ' ^ o o o o ^ ^ 

where H i s found by s u b s t i t u t i n g Eqs. 2-4 in to Eq. 2-8 , or e q u i v a l e n t l y , from 

Eqs. 2-7 by 

H = /EG - F^ . (2-9) 

The unit normal n is then given by 

_ e; X e2 

"" ^ ~ H • (2-10) 

*For a more complete discussion of differential geometry, see for Instance [3] 
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Ihe curvature of the deformed middle surface is described by the second 

fundamental magnitudes L, M, and N; whose definition is 

9ei _ 
L = - -g^ . n , (2-lla) 

o 

3ei _ 9̂ 2 _ 

o o 

3e'2 _ 
N = - T — . n . (2-llc) 

3z 
o 

Substituting Eqs. 2-4 into these definitions gives 

L o o o oJ 

« = - (̂  -̂  ̂ ) 0 I • ^'-''^^ 
o 
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III. EQUILIBRIUM 

Mechanical equilibrium of the cladding in the absence of bulging (e=0) is 

maintained by membrane forces. The only bending stresses come from self-

equilibrating thermal and swelling stresses, and these tend to relax due to 

thermal and fission-enhanced creep. We assume here that the situation is not 

significantly different in the perturbed geometry in that the pressure loading 

is still carried primarily by membrane forces and it is these forces that 

determine whether the bulge will grow unstably and lead to local failure. 

Since bulge growth occurs at high temperatures where significant plastic flow 

is possible, this assumption appears reasonable. 

The only relevant equilibrium equation then comes from the summation of 

forces normal to the middle surface. 

The membrane stresses a acting on a differential shell element of thick

ness h whose middle surface is shown in Fig. 2 can be written in dyadic notation* 

as 

a" = a^^ I^ ̂ ^ i,j =1,2 (3-1) 

with the membrane force resultants (force/unit length) f^, f2 acting on the 

faces of the differential element given by 

_ = -1 
fl = ho • — — — (3-2a) 

|ei| 

- = ~2 
fo = ho 2 - "" • — — - (3-2b) 

|e^| 

Here e^ and e^ are the contravariant base vectors defined as being ortho-

normal to e2 and e^ as shown in Fig. 2. Consequently, the terms to the right 

of the inner products in Eqs. 3-2 are nothing more than the unit normals to the 

coordinate faces. Furthermore, the lengths of the coordinate faces are 

«^ d6^ and •^dz^, as can easily be seen from Eq. 2-6 by successively setting 

dz^ and d6^ equal to zero. The total forces ¥i and ?2 acting on coordinate 

^Summation notation will be used in tensor equations. Indices 1 and 2 refer 
to 6̂  and z , respectively. 
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faces shown in Fig. 2 are then given by Eqs. 3-1 and 3-2 as 

Fl = HbLâ ê'i + a^^'e2]dz ; (3-3a) 

F2 = Hh[al2-^ + a22^2]de ; (3-3b) 

where we have made use of the fact that from the definition of e^ and e^, 

["îl = /G/H (3-4a) 

and 

1̂ 21 = /E/U . (3-4b) 

Besides the forces Fj and F2, the only other net force acting on the shell 

element comes from the pressure P. From Eq. 2-8, this force F is simply 

F = PH de dz n . (3-5) 
n o o 

It is now possible to sum all of the vector forces shown in Fig. 2 to 

satisfy equllbrlum. In general, this summation will require the derivatives 

of Eq. 3-3a and Eq. 3-3b with respect to 6 and z . However, the only equation 

that is of interest is the normal component of the vector sum of forces, which 

can be found by taking the inner product of the sum with the unit normal. 

Since n is orthogonal to e^ and e2, the only contributions to this equation 

will come from Eq. 3-5 and from the inner product of n with the derivatives of 

ê  and e2 in Eqs. 3-3a and 3-3b. These inner products are just the definition 

of L, M, and N in Eqs. 2-11. Therefore the summation of forces normal to the 

shell gives 

Lo^l + 2Mol2 + Na22 = i . (3-6) 
h 

It is useful to note here that when E IS zero, substitution of Eqs. 2-12, 

2-9, and 2-7 into Eq. 3-6 gives 

oil =-f- (3_7) 
a ah a 
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where the subscript "a" will be used to denote conditions when there is no 

perturbation. This result can be expressed in more familiar form by Introducing 

the physical components of the stress tensor a ,.. referred to the unit 

vectors e./|e.|, since it is these components that have the physical units of 

stress (force/lengl 

dyadic notation by 

,2N TV, -.•„U4. „u„„,-„„i „ 4.„ ^(i) stress (force/length"^). The right physical components a (•\ are defined in 

e. 
o = ° (j) ^i ^'^ - ^ — ; i'J = 1'2 . (3-8) 

1^1. 

By equating the right-hand sides of Eqs. 3-1 and 3-8, and making use of the 

orthonormality of the two sets of base vectors, the relationships between 

a and a ,., can be extracted: 
(j) 

(1) 
(L) = î o-- -r i-o- , (3_9^) 

a- ' ,,, = Ea^l + Fal2 

a^^L. = ^(Fall-HGai2) 
(2) \ G '̂ ^ ^^ ) , (3-9b) 

^''\lf '""^<^'' • (3-9C, 

Equations 3-7, 3-9a. and 2-7 then give the familiar result for the hoop stress 
in a cylindrical shell: 

'̂̂  Pa 

^ \ (3-10) 

It is also noted here that from elementry considerations of a cylindrical shell 
under internal pressure 

^ (1) ^ ^ 
^ (2^ • (3-11) 

and 

^ (2) 
a (2) °za • (3_12) 
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If the ends of the cylinder are capped, a is just half the hoop stress given 

by Eq. 3-10. 

Consider now the equilibrium equation 3-6 for the perturbed geometry. The 

stress a will differ from the unperturbed stress a by an amount a which must 
a •' e 

tend to zero as e tends to zero, or 

a = a + a . (3-13) 
a e 

Also 

and 

â J = â J + ô J (3-14) 
a e 

a ... - a ,..+ a ,.. . (i-15) 
(j) a (j) e (j) 

Substituting these stress perturbations and L, M, and N from Eqs. 2-12 

into Eq. 3-6, and neglecting terms of the order |e|2, gives 

^ (1) _ Pe ^^\ , P 32e "̂ zâ  32^ ,„ ̂ ,. 

°e (j) - h~-h^~ + h ¥^^'"~T^"T^ ^̂ ""̂  
a a a o o 

where Eqs. 3-9 have been used to relate the stress components, and the zeroth 

order approximations have been substituted from Eqs. 3-10, 3-11, and 3-12. It 

is worth noting that only the hoop-stress perturbation gives a first-order 

contribution to the equilibrium of the shell. The first two terms of the 

right-hand side of Eq. 3-16 represent a hoop-stress perturbation due to the 

change in radius and wall thickness, while the second two terms are the contri

butions due to the curvature changes. 

The remaining equations necessary to complete the formulation came from 

the constitutive equations, which relate the stress perturbation (o .,,) 

to the perturbed deformation history (e and h ). However, if the deformation 

is predominantly plastic, these equations can be simplified by assuming that 

the material is incompressible. The volume dV of the differential element 

shown in Fig. 2 is given by Eq. 2-8 as 

dV = hdA = hHdz de . (3-17) 
o o 
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In the undeformed state, the volume dV of this same material element is 

dV = h a dz de . (3-18) 
o o o o o 

Substituting 

h = h + h (3-19) 
a e 

along with Eqs. 2-9 and 2-7, and neglecting terms of the order |e|2, gives 

h a 

K = -TT ' (3-20a) 
a aA 

, ^0^0 . (3-20b) 
h = - e —7-— ' 
e â A 

Substituting these equations into Eq. 3-16 yields 

(1) ^ 2PaAe PaA 32e a 32e 
°e (1) h a h a 36^ °za A^ -^p~ (3-21) 

0 0 0 0 0 o ^ '' 

for an Incompressible material. 
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IV. STRAIN-DISPLACEMENT RELATIONSHIPS 

The Lagrangian strain tensor E, serves as a finite strain measure of the 

relative deformation of neighboring material particles. Considering for the 

moment only membrane strains, E, is defined by 

ds2 - ds2 = 2Eĵ ^ dx'̂ dX̂  ; k,£ = 1,2 , (4-1) 

where d and ds are the separation of neighboring material particles in the 

deformed and undeformed states, and (X^, x2) represent the convected coordinates 

(6 , z„) • Substituting Eqs. 2-6 and 2-7 into Eq. 4-1, and neglecting terms of 

the order |e| gives 

2Eii = a2 - a2 -I- 2ae ; (4-2a) 

2Ei2 = 2E21 = 0 ; (4-2b) 

2E22 = A2 - 1 . (4-2c) 

Equation 4-2b shows that to the first order of approxiamtlon there is no 

shear distortion of the middle surface. It is therefore possible to introduce 

the more familiar engineering large-strain measure e (•) ~ ^^^ so-called 

"true" strain - defined as the natural logarithm of the stretches ds/ds along 

the coordinate directions. These ratios can also be determined from Eqs. 2-6 

and 2-7. Again neglecting terms of the order |e| , 

( t )^ ^''\i,-\-"^it) 'i •' "-''' 

e^^\^. = e = In A . (4-3b) 
(2) z^ 

(3) The third principal strain e ,_, perpendicular to the middle surface is 

simply 

it) ê ^̂ .. =ln(^^] +^ . (4-3C) 
(3) \h / h ^ ^ o' a 
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Since most engineering data on the large-strain behavior of materials is 

presented in terms of "true" strain, this definition of strain will be utilized 

in subsequent analysis. 

It has been assumed in Eqs. 4-3 that the stress-free state is a perfect 

cylinder of radius a and that this state serves as a reference for zero strain. 

In fact, however, there will always exist initial imperfections in the geometry. 

Within the framework of the present analysis, these imperfections can be 

modeled as initial perturbations e (6 , z ) and h (6 , z ) . The strains then 
o o o eo o o 

become 

(4-4a) "a>-"^) 
(2) 

,(3) , (K^ 
^ (3) -'^ i iTy 

a a o 

h h 
e eo 

' h h 
a 0 

(4-4b) 

(4-4c) 
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V. CONSTITUTIVE EQUATIONS - AN EXAMPLE 

In this section, the perturbation analysis that was developed in preceding 

sections is applied to cladding whose constitutive equation is assumed to have 

a particular form, although many of the results will be of a more general 

nature. The analysis for a different set of constitutive equations is a 

straightforward exercise. In fact, since the perturbation equations are always 

linear, the most difficult part of the problem is the determination of the 

zeroth-order approximation for the unperturbed stresses and strains in a perfect 

cylindrical shell. 

It is assumed here that the cladding material is incompressible and obeys 

the Prandtl-Reuss flow equations, and that the elastic contributions to the 

strains are negligible. The differential strain increment de ... is then 

de 

where S 

(1) 
(j) 

(1) 
(j) 

3. s(i) de . i i = 1 2 3 

•' a 

is the deviatorlc component of the stress, defined by 

(5-1) 

,(1) _ „(i) 
' (j) " "̂  (j) 

l,j = 1,2,3 (5-2a) 

o = 
,(1) 

(1) + a 
(2) 

(2) + a 
(3) 

(3) 
(5-2b) 

and o and de are the equivalent stress and equivalent strain increment. In the 

absence of shear strains, a and de are given by 

-̂ l ^ (1) (2) 
+ S 

(3) 
-,1/2 

(3) 
(5-3) 

and 

de = J de (1) (1) + de (2) (2) + de (3) 
1/2 

(3) 
(5-4) 
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It is further assumed that the temperature of the cladding is sufficiently 

high such that time-dependent plastic strains are dominant and that these 

strains can be represented by a power-law function of the form 

dl = ̂ ° ^̂ -̂ ^ 

where C and n are temperature-dependent material constants. Substitution of 

Eq. 5-5 into Eq. 5-1 gives 

d-e(̂ ) (11= 3 -n-1 ri) 
Ca S^ ' ; i,j = 1,2,3 . (5-6) dt 2 ^" -̂  (j) ' 

The constitutive equation 5-6 can be reduced to a zeroth-order of approxim

ation and a first-order perturbation in the same manner that the equations in 

Sects. 3 and 4 were reduced. The zeroth-order equation is obviously 

% ^ = l^"a°"'^a''*a, •• ^.J- 1.2.3 (5-7) 

where again the subscript "a" refers to quantities when e = 0. The relationship 

between the strain perturbation ê J'*(j) and the stress perturbations Ŝ ""̂ .̂ can 

easily be formed by substituting into Eq. 5-6 the stress from Eqs. 3-15^and the 

strains from Eqs. 4-4 and 3-20. Neglecting terms of the order |e|2, and making 

use of Eq. 5-7 shows that 

^-^^\: . r 
^ - ^ = ̂  r frn n q(i) - n-2 - - n-i (i) 1 

dt 2 C [ ( - 1 ) S ^ (j) -a o^-^o^ ^ e (j)J + 

3 r a n-1 ,(i) 

C^ a " •" S 2 ^ a ^ a (j) 5 '̂J = 1.2,3 (5_8) 

where 

^ 2-^ ^ a (1) % (1) + \ (2) ° e'(2)J . (5-9) 
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It has also been assumed here that only the material constant C shows a strong 

temperature dependence. The parameter C then represents the perturbation of C 

due to small temperature nonunlformitles. 

In order to be as general as possible, the cladding is assumed to be 

loaded axially by a force F and by gas pressure acting on closed ends. The 

axial stress a in Eq. 3-12 is 
za 

o =1^-1- ^^ ' (5-10) 
za 2h 2iTa h 

a a 

or, making use of the incompressibility condition 3-20a 

Pa2A ẑ''' 

'za = JUT ^ i^^^Th- • (5-11) 
o o o o 

The deviatorlc components of the unperturbed stress are then given by defini

tions 5-2 as 

(1) _ 1 Pa2A 1 ^z^ . r̂  1,.̂  
^ a (1) 2 a h 6 ira h ' ^̂  ̂ ^̂ ^ 

o o o o 

(2) ^z^ 
^ ro^ = o \ ; (5-12b) 
a (2) 37ra h o o 

s(3) = _ gd) _ s(2) (5_12e) 
^ a (3) a (1) ^ a (2) ' ^^ ^^""^ 

and the unperturbed components of the strain rate are given by Eqs. 4-4 and 3-

20a as 

de ,, s a (1) 
dt 

d e ( 2 ) ( 2 ) 
a 
dt 

Hc(3) de ^o^ a (3) 

1 da 
a dt 

_ 1 dA 
A dt 

de ( l> 
a 

9 

9 

(1) -Ta, 

(5-13a) 

(5-13b) 

d ^ - ^ d T ^ - dt • (5-î >̂ 



22 

Substituting Eqs. 5-12 and 5-13 into Eq. 5-7 yields the following two nonlinear 

differential equations: 

F ^ T - . (5-14) A da_ 1 c [i Pa2A _ 1 z^ "I - n-1 
a dt" 2 2 a h 6 Tra h °a 

L o o O oJ 

i dA _ 1 pf 
A dt 2 ^[; 

F A z 
3Tra h o o 

_ n-1 
a , (5-15) 

from which a(t) and A(t) can be determined by numerical integration. 

We now turn to the analysis of the stresses and strains in the perturbed 
(3) geometry. The normal component of the stress perturbation a ,„. must be zero 
e (3) 

in order to be consistent with the thin-shell assumption that membrane stresses 

are much larger than normal stresses. Furthermore, the strain-rate pertur

bations are given in terms of e by Eqs. 4-4 and 3-20b: 

de(l> 
£ (1) ^ d_(^\ ; (5-16a) 
dt dt Va / 

£ (2) _ n. 
dt " "' (5-16b) 

d£(3) 
e (3) d_/£x 
dt ~ dt la>' • (5-16c) 

Substitution of Eqs. 5-16 into Eq. 5-8 yields the single equat 
ion 

3F(^'-'-f"la''?<l,-|^,T,a (5-17) 
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where 

la 
3 , TX-n-3 „(1) „(1) , 2 -n-1 
-X- (n-l)a b /TxS ri\ + -^ o 2 ^ ' a a (1) a (1) 3 a 

2 ^"-l)°a ^ a (1) ̂  a (2) - 3 °a 

3 , i>>-n-3 _(2) (2) , 2 -n-1 
^ (n-l)a S S /ON + T ° 
2 a a (2) a (2) 3 a 

and 

. =a2n-2 . ( 1 ) 
2a a I 3 a (1) [3 ^ a (1) + 3 ̂  a (2) / 

[f (-l)̂ â  -3 _(2) (2) . l - n -
^ a (2) ̂  a (2) "̂  3 

,.-.] 

(5-18a) 

(5-18b) 

The remaining equation necessary to complete the formulation comes from 

the equilibrium equation. Substituting Eq. 5-11 into Eq. 3-21 gives 

(1) 2Pa2A 
o (1) a h e o o 

e/a + 
Pa2A . 32 
a h "^36 o o 

e/a ["Pa2A ^z 1 
~2~ 2a h 2T7a h 
o L o o o oJ 

a2 32e/a 
(5-19) 

Substitution of Eq. 5-19 into Eq. 5-17 yields a single linear differential 

equation for the perturbation e(e , z , t). Once the zeroth-order approxi

mation for a(t) and A(t) are known from Eqs. 5-14 and 5-15, this equation can 

easily be integrated. 
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VI. RESULTS AND DISCUSSION 

A. Material Properties 

In order to illustrate certain features of the bulging analysis presented 

in the preceding sections, it is desirable to choose a representative set of 

material properties. In general, cladding conditions for which the constitutive 

equation 5-5 is applicable are those of high temperature and moderate strain 

rates. We have chosen here a set of data from D. F. Atkins' work [4] on the 

stress-rupture behavior of stainless steel tubes under internal pressure. The 

particular results we have used are for unirradiated Type 316 stainless steel 

with 10 to 15% cold work. Fitting the two material constants C and n in Eq. 

5-5 to Atkins' curves of stress versus strain rate leads to the constants 

given in Table I. 

Table I 

Stainless Steel Properties 
Used in Equation 5-5 

C 

^^'"P' °^ "^ (MPa) -^ h-i 

-45 
538 16.37 1.36 x 10 

649 8.59 6.70 x lO"̂ ** 

760 5.37 1.94 x lO"^'' 

The data base for these constants covers temperatures from 538 to 760°C and 

strain rates from 10 to 10 hrs . Although these strain rates are very 

low for application to accident analysis, comparison of Atkins' data with 

high-strain-rate tensile test data of J. M. Steichen [5] shows that Atkins' 

results can probably be extrapolated up to lO"^ s"^ (36 h"^) at the highest 

temperature (760°C). Beyond this point, the mechanical behavior rapidly be

comes independent of strain rate as work-hardening processes begin to dominate. 

Of course for cladding temperatures above 760°C, the strain-rate regime for 

which Eq. 5-5 is applicable is correspondingly greater. 

In the present analysis, the onset of unstable bulge growth is coincident 

with the onset of unstable growth of either of the unperturbed parameters a or 

A. If only the time to failure is of interest, and if the failure strains 
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are large, Eqs. 5-14 and 5-15 can be integrated over the loading history to 

the point at which either a or A tends to arbitrarily large values. Due to 

the extremely rapid growth of strains near failure, the resulting time to 

failure is Insensitive to the actual value of a or A chosen. For the case of 

constant-pressure loading of closed tubes at constant temperature, Eqs. 5-14 

and 5-15 can easily be solved. Integrating these equations shows that the 

axial deformation A remains constant: equal to 1, while the radius a(t) tends 

to infinity when time t reaches 

,n 

n+1 
3 2 L 

1 rA" 
nC\ h / 

(6-1) 

This equation, with the material constants from Table I, predicts times to 

rupture for Atkins' data (symbols) as shown by the curves in Fig. 3. Although 

the comparison is surprisingly good, it must be pointed out that the parameters 

in Table I are based on strain rates averaged over the life of each specimen. 

1000 

10 

- 1 ; — I I I I 1 1 1 - I 1 — I I I I I I I 

760'C 

_j I I I I 111 I I I I 

100 1000 
RUPTURE LIFE, hr 

10,000 

Fig. 3 Biaxial Stress-rupture Strength of 
10-15% Cold-worked Stainless Steel, 
Data (symbols) fron D. F. Atkins [4]. 
(1 h = 3600 s) 

It is therefore impossible to distinguish between behavior governed by Eq. 5-5 

and a more general constitutive equation of a form In which the right-hand 

side of Eq. 5-5 is multiplied by a material function G(t). It is interesting 

to note however, that equations of this form are often employed to describe 

creep behavior when both primary creep and steady-state creep are important. 



It should also be noted that the deviation of the high-temperature data from 

the curve in Fig. 3 is real, as shown in other results from Atkins' report. 

This deviation probably represents a change in creep mechanisms at lower 

stresses. 

B. Bulge Behavior 

The behavior of the bulge displacement e is governed by Eqs. 5-17 and 5-

19. For the moment we consider only the case in which the temperature is 

uniform so that C^ = 0. The spatial dependency of £ can be eliminated from the 

equations by assuming a solution of the form 

(TTZ \ 

^ j ; m = 0,1,2, , (6-2) 

where L is the length of the bulge as shown in Fig. IB. Equation 6-2 can be 
o 

viewed as either representing the growth of a single Imperfection m the 

geometry with initial amplitude B(0) = B^ or as a Fourier component of a more 

general imperfection. Since the governing equations for e/a are linear, 

solutions of the form of Eq. 6-2 can then be superimposed. 

Substituting Eq. 6-2 and 5-11 into Eqs. 5-17 and 5-19 gives 

, - Pa2 ^ f - 1 2 ^o o a2TT2 "I /A T\ 
la^^) F T T M ^ ̂  2?I?A '̂ za A 2 I 7 r • ^^"^^ 

O O L O J 

_ , . , a h 
^ = 3C T 
dt -̂^ ̂  

Equation 6-3 determines the ratio of the amplitude of the bulge to the radius 

a(t) of the uniform sections of the deformed cladding. Although this equation 

was derived for a particular constitutive equation, it should be noted that the 

term Inside the square brackets will appear regardless of the constitutive 

equation since it comes from the equilibrium conditions Eq. 5-14. In the 

present analysis, the sign of the term governs whether dB/dt in Eq. 6-3 is 

positive or negative, that is, whether or not the amplitude of an initial 

geometric imperfection will grow or shrink as the cladding deforms. 

For pressure loading of a closed tube, o is just 1/2 the nominal hoop 

stress given by Eqs. 3-10 and 3-20a. In this case A = constant = 1. Sub

stituting these results into Eq. 6-3 shows that the only values of m that will 

lead to bulge growth are 0 and 1. The case m = 0 represents a bulge around 

the entire circumference, whereas the case m = 1 represents a bulge around 

half of the circumference. If it is assumed that the smallest geometric 
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Imperfection that will grow provides the most likely nucleus for the bulge, 

Eq. 6-3 gives m = 1 and L /a = 2.22. This corresponds to a bulge on one side 

of the cladding with a length 1.11 times the deformed diameter. It is encour

aging to note that this shape is consistent with the bulge formation that has 

been reported for burst tests of Type 316 Stainless Steel cladding [2]. 

We have written a small computer program to solve Eqs. 5-14, 5-15, and 

6-3 numerically. Figures 4, 5, and 6 show results for dlmensionless radial, 

axial, and bulge displacements, using the material properties for cladding at 

760°C from Table I. The parameter A is defined by Eq. 2-2c, whereas a and e 

are defined by 

a = a(t)/a ; e = B(t)/B . (6-4) 

All t h ree f i gu re s use a = 2 . 7 3 mm, h = 0.381 mm, P = 19.26 MPa, and assume ° o o 
m = 1. 
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Time, hrs. 
40.0 

Fig. 4 Dimensionless Radial (a). Axial (X), 
and Bulge (z) Displacements of a Closed 
Tube for an Initial 0.0055-mm-amplitude 
Bulge of Length 10.0 mm and No Temper
ature Perturbation. (1 hr = 3600 s) 
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Fig. 5 Same as Fig. 4 Except with an Initial 
Bulge Length of 5.0 mm. (1 hr = 3600 s) 
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Fig. 6 Same as Fig. 4 Except for an Open Tube 
with No Axial Force. (1 hr = 3600 s) 
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Fig. 7 Same as Fig. 4 Except with 
10°C Temperature Perturbation. 
(1 hr = 3600 s) 

Figure 4 shows the behavior of a closed tube with L = 10.0 mm. It is 

seen that A remains constant while the unperturbed radius grows unstably at 

t = 38.9 h (1.40 X 10^ s). This is the same time as given by Eq. 6-1. The bulge 

displacement is also seen to grow. Figure 5 shows the behavior under similar 

conditions except that the initial imperfection is assumed to have a length 

L =5.0 mm. The relative amplitude of this imperfection is seen to shrink in 

this case as the tube deforms. 

Figure 6 shows the deformation behavior when the axial stress a is 

zero. The other conditions are the same as in Fig. 5. This type of loading, 

which may be more typical of cladding loading during overpower transients, 

considerably reduces the predicted failure time. 

C. Temperature Perturbations 

The effect of temperature perturbations on the behavior of local plastic 

instability enters the analysis through the perturbation C of the material 

constant C. The differences in the values of C in Table I suggest that very 

small temperature variations can lead to a significant value for C . In fact, 

it is usually assumed that C can be represented by an exponential Arrhenlus-

type equation: 

C = C exp(-T /T), (6-5) 
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A 

with an activation temperature T approximately equal to the activation 

temperature for self-diffusion. Unfortunately, since the parameter n in Table 

I also varies somewhat with temperature, it is impossible to determine a 

meaningful value for T from the data. We choose Instead to assume that T is 

equal to the activation temperature for self-diffusion, namely, 33,700K. For 
small temperature variations T (6 ,a ,t), about the mean temperature T , Eq. 

"̂  e o o a 

6-5 shows that 

"k 
C = CT T /T2 . (6-6) 
e e a 

Two sources of cladding-temperature perturbations that have been con

sidered are those due to variations in the fuel-cladding gap and those due to 

local perturbations in the sodium cooling. Two-dimensional heat-transfer 

calculations have shown that the temperature perturbations due to variations 

in the fuel-cladding gap are expected to range from 1 to 5°C around the circum

ference. Although results are not presented here, it is noted that initial 

fuel eccentricity provides a source for bulge growth through C in Eq. 5-17. 

As the bulge grows away from the fuel, however, the resulting decrease in 

local cladding temperature tends to stabilize the growth. 

Larger temperature perturbations in the cladding are caused by local 

perturbations in the sodium cooling. Numerical calculations by Chuang, 

et̂ aĴ . ,[6] have shown that temperatures of cladding hot spots due to the 

hexagonal geometry vary from 1 to 5°C, whereas those due to spacer wires are 

typically 10 to 20°C. These temperature perturbations also act as a bulging 

source that behaves similar to initial geometric imperfections. 

Our calculations show that temperature perturbations with 60-degree 

hexagonal periodicity cause initial bulge growth, but do not lead to unstable 

growth. This is because for m = 6 the term in the square brackets in Eq. 6-3 

is negative. On the other hand, temperature perturbations due to features 

such as wire spacers have Fourier components with m equal to 0 and 1. Figure 

7 shows an example of the bulge behavior for the same conditions as for Fig. 1 

but with a temperature perturbation of 10°C [ (T = 1 0 cos (6 ) COS(TTZ /L ) ]. 

In both figures B^ = 0.002. It is seen from the different scales in^these 

figures that, for the parameters assumed, the effect of the temperature 

perturbation is much greater than that due to the initial geometric imperfection. 
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VII. CONCLUSIONS 

A perturbation theory of cladding failure by local plastic instability 

has been developed. The resulting equations that govern the growth of a 

geometric Imperfection, or bulge, are linear and are easily solved once the 

zeroth-order solution for the deformation of a perfect cylinder is known. 

For hydrostatic loading of a closed tube, the most likely local plastic 

instability corresponds to a bulge on one side of the cladding with a length 

of about 1.11 times the deformed diameter. If creep damage of the grain boun

daries were sufficient to cause pin-hole failure, resulting in relief of 

loading early in the deformation, the bulge amplitude would remain small. If 

the loading were not relieved, failure would occur by plastic instability of 

the bulge and would be characterized by sudden rupture with a rip along the 

length of the bulge. In either case, the failure criterion should be based on 

the perturbed stresses and strains rather than the uniform stresses and strains. 

In the more general case of loading during overpower conditions, both hydro

static and rigid mandrel like loading components may contribute. In this 

case, bulging can also take place if local plastic instability occurs due to 

the hydrostatic component of loading before uniform cladding expansion is 

sufficient to cause failure. 

Changing the biaxiality of the loading from the 2:1 closed-tube state has 

been found to exert a considerable influence on the bulge growth dynamics. 

For instance, a stress state in which the axial stress is zero, which may be 

more typical of transient overpower conditions, significantly reduces the time 

to the onset of plastic instability. 

Temperature perturbations have also been shown to affect bulge growth. 

The combination of large creep-activation energies and high temperature con

ditions typical of accident conditions make the growth dynamics sensitive to 

temperature perturbations as small as 5 to 10°C. Sources for such temperature 

perturbations are variations in the fuel-cladding gap due to eccentric fuel 

pellets and local perturbations in the sodium cooling. Of these, the pertur

bations of coolant flow are the most Important, both because the cladding-

temperature variations due to eccentric fuel pellets are usually smaller than 

those due to flow perturbations and because bulge growth away from the fuel 

tends to decrease cladding temperatures, thus stabilizing the growth. 
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Our calculations have shown that temperature perturbations in the cladding 

due to the 60° (1.05 rad) hexagonal periodicity of the flow channels provide a 

source for bulging similar to the source provided by initial geometric im

perfections, but do not lead to unstable growth. On the other hand, temperature 

perturbations due to features such as wire spacers, which have both axisymmetric 

components and components with 360°(2Tr rad) periodicity, do lead to unstable 

growth. Here, temperature perturbations with a magnitude of the order of 10°C 

are sufficient to dominate the effect of any anticipated initial geometric 

imperfections. 

Numerical results have been presented in this report for cladding temp

erature and loading conditions under which creep strains are dominant. These 

strains have been modeled by a power-law constitutive equation. However, other 

calculations using the more general endochronic theory [7] of vlsco-elasto-

plasticity, show qualitatively similar results. 

One of the other areas that is being investigated is an extension of the 

analysis to include a calculation of the rip area at failure. A knowledge of 

this area is important in determining the initial release of fission gas and/or 

molten fuel from the pin. It is currently thought that the opening up of the 

cladding at the failure site occurs with little additional deformation in the 

circumferential direction, since the loading there is rapidly relieved. 

Elastic recovery cannot be sufficient to explain the large areas that are 

observed in some cases. It therefore seems logical to seek neighboring shapes 

into which the bulge with a rip along its length can open with no additional 

stretching. If this is the case, it is not difficult to show that if the 

bulge amplitude at failure is zero, so is the rip area. As the bulge amplitude 

at failure increases, so does the rip area. Unfortunately, a detailed analysis 

of this behavior involves the solution of a set of hyperbolic partial different

ial equations. However, a reasonable estimate of the rip area might be made 

by assuming that the cladding opens up on both sides of a rip along the length 

of the bulge such that the edges of the rip do not change length. The maximum 

area can then be found by assuming that the rip edges form arcs of a circle, 

whose arc length is completely determined from the bulge amplitude prior to 

failure. 
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